Skip to main content Skip to main navigation Skip to search

Queensland and NSW floods 2022

Visit recovery.gov.au to see what help is available.

Close
Home

Top navigation main

  • News & media
  • Jobs
  • Ministers
  • Contact us
Main menu

AWE Main

  • Agriculture and land
    Agriculture and land Building stronger and more sustainable agriculture, fisheries, forestry and land care.
    • Animal health
    • Farming, food and drought
    • Fisheries
    • Forestry
    • Land
    • Climate change and agriculture
    • Plant health
    • Drought and rural support
    • Mouse infestation advice
    Xylella

    Protect against unwanted plant pests

    Our biosecurity system helps protects us. Everyone has a role in supporting our biosecurity system.

    Find out more

  • Water
    Water Improving the sustainable management of Australia’s water resources for agriculture, the environment and communities.
    • Coal, Coal seam gas (CSG) and water
    • Commonwealth Environmental Water Office
    • Water policy and resources
    • Wetlands
    Water matters

    Water Matters

    Keep up with the latest news on the department's work in managing Australia's water resources.

    Read the latest edition here

  • Environment
    Environment Improving stewardship and sustainable management of Australia’s environment.
    • Biodiversity
    • Bushfire recovery
    • Climate change and the environment
    • EPBC Act
    • Environmental information and data
    • International activities
    • Marine
    • Partnerships
    • Protection
    • Report a breach of environment law
    • Threatened species & ecological communities
    • Waste and recycling
  • Biosecurity and trade
    Biosecurity and trade Lowering biosecurity risks to Australia, and assisting industry to accelerate growth towards a $100 billion agricultural sector by 2030.
    • Aircraft, vessels and military
    • Biosecurity policy
    • Cats and dogs
    • Exporting
    • Importing
    • Invasive species
    • Pests, diseases and weeds
    • Public awareness and education
    • Trade and market access
    • Travelling or sending goods to Australia
    • Wildlife trade
    Brown marmorated stink bug

    BMSB Seasonal Measures

    Australia has strengthened seasonal measures to manage the risk of BMSB.

    View our seasonal measures

  • Parks and heritage
    Parks and heritage Managing Australia’s iconic national parks, historic places and living landscapes.
    • Australian Marine Parks
    • Australian National Botanic Gardens
    • Booderee National Park
    • Kakadu National Park
    • Christmas Island National Park
    • National parks
    • Norfolk Island National Park
    • Heritage
    • Pulu Keeling National Park
    • The Great Barrier Reef
    • Uluṟu-Kata Tjuṯa National Park
    The reef

    Great Barrier Reef

    Australia is protecting and conserving this World Heritage Area.

    Find out more

  • Science and research
    Science and research Undertaking research and collecting data to support informed decisions and policies.
    • Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES)
    • Climate change
    • Australia's biological resources
    • National Environmental Science Program (NESP)
    • Our science strategy
    • Australian Biological Resource Study (ABRS)
    • State of the Environment (SoE) reporting
    • Bird and bat banding
    • Supervising Scientist
    Abares

    ABARES Insights

    Get 'snapshots’ of agricultural, forestry and fisheries industries, or analysis of key issues.

    Find out more

  • About us
    About us Enhancing Australia’s agriculture, environment, heritage and water resources through regulation and partnership.
    • Accountability and reporting
    • Assistance, grants and tenders
    • Contact us
    • Fees and charges
    • News and media
    • Our commitment to you
    • Payments
    • People and jobs
    • Publications
    • What we do
    • Who we are
    A day in the life

    A day in the life...

    Our video series showcases the diverse and important work we do.

    Find out more

  • Online services
    Online services We do business with you using online platforms. This makes it easier for you to meet your legal requirements.
Department of Agriculture

Breadcrumb

  1. Home
  2. Agriculture and land
  3. Animal
  4. Animal health
  5. Antimicrobial resistance
  6. Questions and answers

Sidebar first - Animal

  • Antimicrobial Resistance
    • Antimicrobial Resistance in Bacteria of Animal Origin
    • Communique - Antimicrobial Resistance Roundtable
    • Questions and answers
    • Summary

Questions and answers

​​​Report of the Department of Agriculture Survey for Antimicrobial Resistance in Bacteria of Animal Origin


[expand all]

1. What is the Department of Agriculture survey for antimicrobial resistance in bacteria of animal origin?

This program provides a snapshot of the prevalence of resistance to important antimicrobials in key indicator bacteria found in the gut of food-producing animals in Australia. It is the first large scale survey to look at antimicrobial resistance in Australia and provides a baseline to identify future trends.

The survey results support Australia’s rigorous approach to contro​lling the amounts and types of antibiotics used in our food animal industries. This approach is an important factor in preventing the development and spread of resistant bacteria.

2. What are antimicrobials and antimicrobial resistance?

The terms antimicrobials, or antimicrobial agents, refer to all types of natural and synthetic drugs which may kill or slow down the growth of microorganisms such as bacteria. These include antibiotics, anti-fungals, and household disinfectants. Antimicrobial agents are widely used for the treatment and prevention of human and animal diseases.

The term antimicrobial resistance refers to a property of bacteria that enables them to grow in the presence of antimicrobial drug levels that would normally be expected to inhibit or kill susceptible bacteria. Development of resistance can eventually stop or reduce the effectiveness of antimicrobial agents intended to treat human and animal infections.

The emergence of antimicrobial resistance threatens our ability to fight human and animal diseases. It could narrow the line of defence against bacterial infections to only a few antibiotics and increase health care costs. Infections caused by antimicrobial resistant bacteria are more difficult to treat, often resulting in increased morbidity, increased time in hospital and higher mortality rates.

3. What did the surveillance program look at?

In this survey, samples of gut contents were obtained from healthy animals at 31 abattoirs in Queensland, New South Wales, Victoria and South Australia. Between 200 to 300 samples each from cattle (equal numbers of feedlot, grass-fed and dairy), pigs and poultry were collected between November 2003 and July 2004. Bacteria isolated from the samples were then tested to see if they were resistant to a range of different antibiotics. Resistance testing was performed on bacteria namely, Escherichia coli, Enterococcus faecium, Enterococcus faecalis, Enterococcus casseliflavus, Enterococcus hirae and Campylobacter isolated from these samples.

The antimicrobials tested for include those used in food-producing animals in Australia, some that are important to human medicine, and some that are not used in Australia but have an internationally recognised public health profile. Veterinary diagnostic laboratories carried out the preliminary isolation of bacteria and specialised laboratories performed resistance testing.

4. What did the survey find?

The study findings are positive for the Australian livestock industries. The results showed that a low proportion of bacteria, isolated from the guts of the three animal species tested were resistant to antibiotics. The National Health and Medical Research Council reviewed the study’s findings and found the impact on human health is likely to be small.

The survey found resistance to “critically important” antibiotics to human medicine (such as the quinolone class of drugs and third generation cephalosporins) was non-existent or low in bacteria isolated from the gut of food-producing animals that were tested. For example:

  • no resistance, or a very low prevalence of resistance to 'critically important' antimicrobials to human medicine was found with the exception of streptogramins and Enterococcus faecium
  • no resistance amongst Escherichia coli to either cefotaxime or ceftiofur (both third generation cephalosporins)
  • no resistance to vancomycin in enterococci
  • other resistances were reassuringly uncommon or not detected, including gentamicin, quinolone resistance in Escherichia coli, and quinolone resistance in Campylobacter species.

There was no multiple-resistance found in enterococci or Campylobacter isolated from chickens.

5. How comprehensive and accurate is the survey?

The survey focused on species of food-producing animals where antimicrobials are most likely to be used in ways that would result in antimicrobial resistance (such as in-feed or in-water use, or frequent use of injectable preparations).

The bacteria for resistance testing (Escherichia coli, Enterococcus faecium, Enterococcus faecalis, Enterococcus casseliflavus, Enterococcus hirae and Campylobacter spp) were selected in a similar manner to other national surveillance programs for antimicrobial resistance in food-producing animals. The resistance status of Campylobacter spp. from broiler chickens was assessed because Campylobacter infections in humans are commonly associated with poultry. Escherichia coli and Enterococcus spp. are common in the gut of animals and man and are known to carry antibiotic resistance genes that can transfer to human pathogens if people eat them in contaminated food.

Although drug-resistant Salmonella spp. are a prominent issue in food safety and veterinary public health, the prevalence of Salmonella spp. in most animal populations is usually too low for their resistance to be assessed in a survey of this type.

Some antimicrobials used exclusively in human medicine were included where there was the potential for resistance to arise because a related drug is used in food-producing animals or where there was a concern about resistance to a particular antimicrobial class in human medicine (e.g. third-generation cephalosporins, fluoroquinolones). Some drugs were included that were not regarded as highly important in human medicine (e.g. tetracyclines). These have been extensively used in food-producing animals and resistance is commonly found in commensal (common) and pathogenic bacteria.

This program was not designed to explore the reasons why different resistance phenotypes do or do not occur in livestock. It does provide baseline data about antimicrobial resistance trends in food-producing animals in Australia.

6. Why didn't the survey include sheep?

Sheep were a low priority for inclusion because in Australia sheep are largely grass-fed and anecdotally antimicrobial use is uncommon in sheep. Classes of livestock with a higher exposure to antimicrobials were included. The survey did include grass fed cattle and this provided adequate representation from grazing livestock industries.

7. Why didn’t the survey include an assessment of AMR in Campylobacter from cattle and pigs?

Chickens are an important source of Campylobacter infections in humans.  Resources were therefore focused on this animal species. It is recognised however that there are many other food and environmental (non-food) sources of Campylobacter infections in humans.

8. Why is there a distinction between multi-resistance and multiple resistance?

In producing this report it became apparent that there is a lack of standard terminology for describing the number of drugs to which a bacterial isolate is resistant. In this report the terms multi and multiple were used to describe resistance. Multi-resistance is defined as isolates resistant to two or more antibiotics and multiple-resistance is defined as isolates resistant to four or more antibiotics. In any future work these and other definitions would be standardised, taking into account any definitions in use elsewhere.

9. Some multiple resistance in E. coli from pigs was detected—is this a concern?

Multiple resistance is an indicator that more drugs have been used more often. Experts are concerned that diarrhoea in young pigs caused by pathogenic E. coli attract a lot of antimicrobial use and contributed to the resistance in commensal (common) E. coli. In the future, herds affected with these multiple resistant pathogens are increasingly likely to rely on drugs of higher importance. The pig industry and researchers are involved in finding ways of minimising the use of high importance drugs, because of their potential impacts on human health down the food chain.

10. How are the confidence intervals for the proportion of resistance isolates calculated and how are they interpreted?

This report used modern statistical routines to generate the best possible confidence limits for the data collected. These are termed 'exact binomial confidence limits'. Essentially the confidence intervals are a way of accounting for variability arising from sampling. It is not possible to measure the resistance of all bacteria in the whole population. This system samples bacteria for assessment. The extent that the proportion resistant in the sample measured reflects the proportion resistant in the population is assessed with confidence intervals. In the 95 per cent confidence limits reported in this study, the true level of resistance in the population has a 95 per cent probability of being somewhere between the lower and upper confidence limit.

11. How does antimicrobial resistance develop?

Antimicrobial resistance results from the exposure of microorganisms to antimicrobial drugs. Use of antimicrobial drugs allows the small number of organisms that are resistant to that drug (through mutation or transfer of resistance genes from other bacteria) to survive the treatment and continue to grow. Some bacteria are naturally resistant to some antimicrobial drugs and different antimicrobials are needed to treat infections. Overuse or inappropriate use of antibiotics is an important contributor to antimicrobial resistance.

The antimicrobial resistance of greatest concern is that acquired by bacteria through alterations in their genetic make-up as a result of random changes (mutations) in their DNA or through movement of antimicrobial resistance genes from one bacterium to another. Continued use of an antimicrobial in the face of resistance to it, allows resistant bacteria to survive the treatment and these then become the dominant bacteria in that setting.

12. Why are antimicrobials used in food-producing animals?

Antimicrobials are prescribed and used therapeutically for the treatment of animal diseases and may be added to the feed of food-producing animals to prevent infections. Some antibiotics used for these purposes also have a stated claim for growth promotion or increased feed efficiency. Only one of the antibiotics used under these circumstances, tylosin, was identified by JETACAR as being used in human medicine. Tylosin is currently under review by the APVMA. Other antibiotics that may include claims on their label for growth promotion or increasing feed efficiency are not important in human therapy and are unlikely to be involved in antimicrobial resistance in humans.

13. What do farm animals have to do with antimicrobial resistance?

The use and overuse of antibiotics, whether in humans or animals can result in bacteria that are resistant to antibiotics. Antibiotics are used in animals to control infection and there are many regulations and codes of good practice that govern their use.

In Australia, all antibiotic products used in all animals must be registered by the Australian Pesticides and Veterinary Medicines Authority (APVMA). The APVMA’s governing legislation states that the APVMA must not register any product that is harmful to people, animals, crops or the environment. The states and territories control the use of registered products in their jurisdiction.

In addition, there are third-party independently audited industry quality assurance programs that require participating producers to follow good agricultural practices in using agricultural chemicals and veterinary drugs, including antibiotics. The National Residue Survey (NRS) monitors and reports the levels of residues of veterinary drugs (including residues of antibiotics) in meat. The NRS provides results of testing to the participating primary industries to help them monitor and prevent chemical residues in products.

14. Can antimicrobial residues in food lead to antimicrobial resistance in people?

This survey does not look at whether antimicrobial resistance can be passed to people through the food chain. However, the Joint Expert Technical Advisory Committee on Antibiotic Resistance report found that it was highly unlikely that the consumption of antibiotic residues in food would lead to the development of resistance.

This is because antibiotic residue levels in food are generally low and are likely to reduce further by cooking, other food processing and by metabolism in the human gut.

15. Where can I find information on food safety issues related to antimicrobial resistance?

More information on related food safety issues can be found on the Australian Go​vernment Department of Health and Ageing’s Food Regulation website.

​

Contacts

Call 1800 900 090

Contact us online

Report a biosecurity concern

Thanks for your feedback.
Thanks! Your feedback has been submitted.

We aren't able to respond to your individual comments or questions.
To contact us directly phone us or submit an online inquiry

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.

Please verify that you are not a robot.

Skip

Footer

  • Contact us
  • Accessibility
  • Disclaimer
  • Privacy
  • FOI
Last updated: 04 November 2019

© Department of Agriculture, Water and the Environment

We acknowledge the Traditional Owners of country throughout Australia and recognise their continuing connection to land, waters and culture. We pay our respects to their Elders past, present and emerging.